Turnover Prediction Of Shares using Data Mining techniques : A Case Study
نویسندگان
چکیده
Predicting the Total turnover of a company in the ever fluctuating Stock market has always proved to be a precarious situation and most certainly a difficult task at hand. Data mining is a well-known sphere of Computer Science that aims at extracting meaningful information from large databases. However, despite the existence of many algorithms for the purpose of predicting future trends, their efficiency is questionable as their predictions suffer from a high error rate. The objective of this paper is to investigate various existing classification algorithms to predict the turnover of different companies based on the Stock price. The authorized dataset for predicting the turnover was taken from www.bsc.com and included the stock market values of various companies over the past 10 years. The algorithms were investigated using the ‘R’ tool. The feature selection algorithm, Boruta, was run on this dataset to extract the important and influential features for classification. With these extracted features, the Total Turnover of the company was predicted using various algorithms like Random Forest, Decision Tree, SVM and Multinomial Regression. This prediction mechanism was implemented to predict the turnover of a company on an everyday basis and hence could help navigate through dubious stock markets trades. An accuracy rate of 95% was achieved by the above prediction process. Moreover, the importance of the stock market attributes was established as well.
منابع مشابه
A data mining approach to employee turnover prediction (case study: Arak automotive parts manufacturing)
Training and adaption of employees are time and money consuming. Employees’ turnover can be predicted by their organizational and personal historical data in order to reduce probable loss of organizations. Prediction methods are highly related to human resource management to obtain patterns by historical data. This article implements knowledge discovery steps on real data of a manufacturing pla...
متن کاملUsing Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach
Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...
متن کاملPersonal Credit Score Prediction using Data Mining Algorithms (Case Study: Bank Customers)
Knowledge and information extraction from data is an age-old concept in scientific studies. In industrial decision-making processes, the application of this concept gives rise to data-mining opportunities. Personal credit scoring is an ever-vital tool for banking systems in order to manage and minimize the inherent risks of the financial sector, thus, the design and improvement of credit scorin...
متن کاملArtificial Intelligence for prediction of porosity from Seismic Attributes: Case study in the Persian Gulf
Porosity is one of the key parameters associated with oil reservoirs. Determination of this petrophysical parameter is an essential step in reservoir characterization. Among different linear and nonlinear prediction tools such as multi-regression and polynomial curve fitting, artificial neural network has gained the attention of researchers over the past years. In the present study, two-dimensi...
متن کاملIdentification of Fraud in Banking Data and Financial Institutions Using Classification Algorithms
In recent years, due to the expansion of financial institutions,as well as the popularity of the World Wide Weband e-commerce, a significant increase in the volume offinancial transactions observed. In addition to the increasein turnover, a huge increase in the number of fraud by user’sabnormality is resulting in billions of dollars in lossesover the world. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1508.00088 شماره
صفحات -
تاریخ انتشار 2015